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An implicit Lagrangian lattice Boltzmann method for
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SUMMARY

In this paper, we propose a new Lagrangian lattice Boltzmann method (LBM) for simulating the
compressible �ows. The new scheme simulates �uid �ows based on the displacement distribution func-
tions. The compressible �ows, such as shock waves and contact discontinuities are modelled by using
Lagrangian LBM. In this model, we select the element in the Lagrangian coordinate to satisfy the
basic �uid laws. This model is a simpler version than the corresponding Eulerian coordinates, because
the convection term of the Euler equations disappears. The numerical simulations conform to classical
results. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann method (LBM) has recently become an alternative method for compu-
tational �uid dynamics (CFD). Unlike conventional methods based on macroscopic continuum
equation, the LBM starts from mesoscopic kinetic equations, i.e. the Boltzmann equation, to
determine macroscopic �uid �ows. The kinetic nature brings certain advantages over conven-
tional numerical methods, such as its algorithmic simplicity, easy handing of complex bound-
ary conditions, and e�cient hydrodynamics simulations [1–5]. By using parallel computation
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scheme in a multi-processor computer, we can easily solve a larger size of compressible �ow
problem with LBM.
During the past few years, much progress has been made in the development of the LBM

[5]. Di�erent models for simulating a wide variety of physical systems have been developed.
In this article, we study a new method, Lagrangian LBM (LLBM). We will focus on the
simulation of the shock waves and contact discontinuities in the Lagrangian coordinates.
There are many signi�cant re�ned �nite-di�erence methods for the compressible �ows in

history [6–12]. The total variation diminishing (TVD) [7] and the essentially non-oscillatory
(ENO) [8] methods are to minimize numerical di�usions and non-physical oscillatory e�ects.
The �nite volume method with unstructured meshes is to �t complex boundaries [9]. The
meshless method can get out the restriction of grid meshes [10]. Level set method can be
used to trace the moving boundaries [11, 12]. When these schemes are applied to a shock
wave tube problem, they produce a very high resolution for the shock, especially in TVD-
type schemes. However, the contact discontinuity is still spread over typically three to four
grid cells. For Eulerian �nite-di�erence method, contact discontinuities are more di�cult to
compute with high resolution than in the case of shock since they do not have a natural
compression mechanism to help their sharp numerical resolution. LBM can o�er an ideal
numerical e�ect and a new insight.
LBM is limited to low Mach �ows [13], although several related compressible techniques

have been proposed. In order to remove the low Mach restriction, in recent years, a series of
lattice Boltzmann model for the compressible �ows have been proposed [13–31]. Alexander
et al. [13] chose a modi�ed equilibrium distribution, allowing the sound speed small. Nadiga
[14] proposed a discrete velocity model. Huang et al. [15] used �ow-adapted discrete
velocities, a non-unique equilibrium distribution constrained by a set of linear moments and the
used interpolated nodes. Prendergast and Xu [16], Kim et al. [17], and Kotelnikov and Mont-
gomery used Bhatnagar–Gross–Krook-type models [32] to establish new type �ux and em-
ployed TVD �ux limitation with the neighbourhood cells [18]. Renda et al. [19], Vahala et
al. [20], Sun [21], De Cicco et al. [22], Yan et al. [23], Mason [24, 25] proposed many mod-
els by using additional techniques to achieve more higher Mach numbers for compressible
�ows.
These models encounter two problems to be solved: (1) the accuracy of these models are

�rst-order system, (2) the solution of the shock is higher than the resolution of the contact
discontinuity. In this paper, to overcome these problems, we propose a new method, LLBM.
The Lagrangian forms are better suited to trace the discontinuity because it does not have
convection term in the motion equations. Ancona de�nes a ‘fully Lagrangian’ LBM for the
conservation system [26, 27], the main step in the approach is to use Lagrangian variables for
the distribution function, and the lattice Boltzmann equation becomes the Lagrangian lattice
Boltzmann equation. In this paper, the LLBM is proposed. It has three aspects that are dif-
ferent from Ancona’s method: (i) using displacement distribution function instead of velocity
distribution function. (ii) Macroscopic variables are mass, displacement and pressure forces,
instead of density, momentum and energy. (iii) these equilibrium distribution functions are
implicit formula related to the macroscopic variables in time step n and n + 1. In the
Lagrangian coordinates, the �uid consists of some elements with mass conservation only.
These elements are ‘large’ �uid particles moving by pressure force. Since the element has
one conservative variable, mass, the equilibrium distribution function is simpler than the
corresponding Eulerian versions.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1407–1418



AN IMPLICIT LAGRANGIAN LBM 1409

In the next section, the Lagrangian lattice Boltzmann model is described. In Section 3, we
simulate four numerical examples with shock waves and contact discontinuities, and Section 4
gives concluding remarks.

2. LAGRANGIAN LATTICE BOLTZMANN MODEL

2.1. Lagrangian lattice Boltzmann equation

Let us de�ne f�(i; j; t) to be the displacement distribution function with micro-displacement
e� at time t and the Lagrangian coordinates (i; j). The Lagrangian coordinate (i; j) only takes
on discrete values of the chosen lattice’s nodes [26]. All the simulations shown in this paper
have been done in two dimensions using a square HPP lattice [33], see Figure 1.
The nearest neighbour vectors are de�ned as

e�=
(
cos

�− 1
2

�; sin
�− 1
2

�
)
; �=1; : : : ; 4 (1)

The Lagrangian lattice Boltzmann equation for f�(i; j; t) can be written as

df�(i; j; t)
dt

=��(i; j; t) (2)

where ��(i; j; t) is the collision operator representing the rate of change of the distribution due
to the collisions. According to Bhatnagar, Gross, and Krook (BGK), the collision operator is
simpli�ed using the single time relaxation approximation [18]. Hence, the Lagrangian lattice
Boltzmann BGK equation is

df�(i; j; t)
dt

=��(i; j; t)= − 1
�
[f�(i; j; t)− feq� (i; j; t)] (3)

where feq� (i; j; t) is the equilibrium distribution with the Lagrangian coordinate (i; j), factor
� is the single relaxation time. The mass of per (i; j) is m, and macroscopic displacement,
X�(i; j; t) are de�ned in terms of the micro-displacement distribution function by

m(i; j; t)=
∑
�
f�(i; j; t) (4)

m(i; j; t)X�(i; j; t)=
∑
�
f�(i; j; t)e�� (5)

Figure 1. (a) HPP lattice on the Lagrangian coordinate; and (b) displacement.
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In order to obtain a stable macroscopic mass m, we assume the equilibrium distribution
function feq� (i; j; t) exists and ∑

�
feq� (i; j; t)=m(i; j; t) (6)

At time step n, the collision term �n�(i; j) is required to satisfy∑
�
�n�=0 (7)

∑
�
�n�e�j=mu

n
j (8)

∑
�

�n+1� −�n�
�t

e�j=Nnj (9)

where n indicates time step, �t is the time step length, u is the weight average velocity
between time steps n and n+ 1, N is the weight average pressure-work between time steps
n and n+ 1.
A suitable equilibrium distribution can be chosen in the following form for an implicit

Lagrangian lattice Boltzmann scheme from Equations (7)–(9):

feq; n� =
m
b
+
D
bc2

e��[mX n� + �mu
n
�] (10)

feq; n+1� =
m
b
+
D
bc2

e��[mX n+1� + �(mun� + N
n
��t)] (11)

In Equations (7) and (8), b=4 is the links number to the neighbourhood, c= |e�|, D=2 is
the spatial dimensional number.

2.2. Macroscopic equations

In Equations (8) and (9), variables un�; N
n
� are the weight average time between n and n+1

of the velocity and pressure-work, that is

un�= u
n
��+ (1− �)un+1� (12)

Nn�=N
n
��+ (1− �)Nn+1� (13)

where � is the parameter to control the explicit (�=1) or implicit (�=0) character of the
scheme. Using Equations (7)–(9), we have

�n�=
D
bc2

me��un� (14)

�n+1� =
D
bc2
(mun� +�tN

n
�)e�� (15)

Summing Equation (2) over � and using conditions (4) and (7), we obtain the equation of
conservation of mass

dm
dt
=0 (16)
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Using Equation (1) and then multiplying Equation (2) by the lattice vector e�� and summing
over � gives the equation for the displacement

d(mX�)
dt

=
∑
�
�n�e��=mu

n
� (17)

Removing the mass m from two sides of Equation (17), we give the equation for relation of
velocity and displacement

dX�
dt
= u� (18)

Equation (2) can be written by �rst-order di�erential form

fn+1� − fn�
�t

=�n� +O(�t) (19)

by using Equations (11) and (19), we obtain the macroscopic dynamical equation in the
condition of �t → 0,

d2(mX�)
dt2

=Nn� (20)

In Equation (19), the distribution fn+1� is unknown as it contains the weight average time
between n and n+1 of the velocity un� and pressure-work N

n
�, therefore, Equation (19) is an

implicit equation, and has to be calculated in an iterative manner. Another condition, isentropic
equation, can be used to modify the convergence of the implicit equations.

2.3. An implicit scheme with entropy modi�cation [34]

We consider isentropic �ows: the entropy of each computational element is written as

S=
p
��

(21)

where � is the density, � is the speci�c heat ratio. Consider the isentropic �ow, we have

dS
dt
=0 (22)

The density � of the �uid can be written as

�=
M
�i; j

(23)

where M is the element mass. The volume of the element given by

�i; j=0:5[(xi; j − xi+1; j+1)(yi+1; j − yi; j+1)− (xi+1; j − xi; j+1)(yi; j − yi+1; j+1)] (24)

The mass in the lattice i; j is de�ned by the average mass of its four neighbouring elements,
given by

mi; j= 1
4[�i−1; j−1�i−1; j−1 + �i; j−1�i; j−1 + �i; j�i; j +�i−1; j�i−1; j] (25)
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In the lattice i; j, the pressure-works Nxi; j and Nyi; j are calculated as

Nxi; j = 1
2[pi; j(yi+1; j − yi; j+1) + pi−1; j(yi; j+1 − yi+1; j) + pi−1; j−1(yi−1; j − yi; j−1)
+pi; j−1(yi; j−1 − yi+1; j)] (26)

Nyi; j = 1
2[pi; j(xi; j+1 − xi+1; j) + pi−1; j(xi−1; j − xi; j+1) + pi−1; j−1(xi; j−1 − xi−1; j)
+pi; j−1(xi+1; j − xi; j+1)] (27)

The iteration procedure in this paper can be given as

(1) Calculate fn� from macroscopic variable.
(2) Assign updated F� as fn+1� , we get �n� from Equation (19), X� from Equation (5), u�

from Equation (10), un+1� from Equation (12).
(3) Assign updated p as pn+1, we calculated Nn+1xi; j , N

n+1
yi; j from Equations (26) and (27),

Nn+1xi; j , N
n+1
yi; j from Equation (13), �n+1� from Equation (15).

(4) Calculate fn+1� from Equation (19), X� from Equation (5).
(5) Calculate �n+1� from Equation (24), pn+1i; j from Equation (23).
(6) Check the convergence of pressures. If |(pn+1i; j − p)=pn+1i; j |¡�1 is satis�ed, go to step

(7); otherwise go to step (3).
(7) Check the convergence of the condition. If |(fn+1� −F)=fn+1� |¡�2 is satis�ed, begin to

calculate the next time step; otherwise go to step (2).

In the case of a one-dimensional domain, it leads to

Ni= − (pi − pi−1); �i= xi+1 − xi; mi= 1
2(Mi +Mi+1) (28)

and the coe�cient D=bc2 in feq� becomes 1=bc2.

3. NUMERICAL EXAMPLES

In this section, we apply the LLBM to four gas �ows. The �rst one is the typical Riemann
problem, namely the shock tube problem of Lax. The second one is the propagation of a planar
pressure pulse [34]. The third one simulates the response of a planar �ame to a harmonic
pressure wave [34]. The last problem is two-dimensional Sod’s problem containing shock
waves

1. One-dimensional Lax’s problem [23].
In Lax’s problem, the initial condition (at t=0:0) is de�ned by

(�; u; p)= (0:445; 0:698; 3:528) if 06x60:5

(�; u; p)= (0:5; 0:0; 0:571) if 0:5¡x61:0
(29)

Figure 2(a)–(d) displays the results of the density �, pressure p, velocity u and the internal
energy E calculated by using LLBM at the time t=100�t. Numerical experiments showed
that for Lax’s problem the time step is �t=4:8387×10−3. The boundary condition at the two
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Figure 2. Comparison of exact solutions and LLBM results of one-dimensional Lax’s problem.
(a)–(d) (solid lines are exact solutions, circle are LLBM results): (a) density; (b) pressure;
(c) velocity; and (d) internal energy. Parameters: �t=4:8387×10−4, lattice size N =100, time

t=100�t, �=1:4, b=2, c=0:01, �=1:2, �= − 1:2.

ends is the Von Neumann condition. The internal energy E can be calculated by E=p=�(�−1).
By comparing this results with the exact solution, we �nd the shock waves and the contact
discontinuities spread over typically two to three grid cells. This method is slightly higher
resolution than the LBM method [23].
2. One-dimension pressure wave propagation [34].
In this example, the initial pressure pulse will break into two propagating waves in the

positive and negative directions. We select the initial conditions in the region x∈ [0; 1]

�(x)=0; u(x)=0; p(x)=1:0 + 0:5×sech[50(x − 50)] (30)

Figure 3(a) is the initial pressure. Figure 3(b)–(d) displays the results of the pressure p,
density �, and velocity u at the time t=500�t. The results of the LLBM calculation can
be compared with Liu’s results in Reference [34]. This scheme can maintain these strong
gradients.
3. One-dimension response of a planar �ame to a harmonic pressure wave.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1407–1418
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Figure 3. Numerical results of one-dimensional pressure wave propagation: (a) Initial pressure. (b)–(d)
(LLBM results); (b) pressure; (c) density; and (d) velocity. Parameters are �t=4:84×10−4, element

number N =100, time t=500�t, �=1:4, b=2, c=0:01, �=1:2, �= − 1:2.

Example 3 is a one-dimension response of planar �ame to a harmonic pressure wave with
the following initial data:

u(x)=0 for x∈ [0; 2:0] (31)

�(x)=0:2 if 06x61:5

�(x)=1:0 if 1:5¡x62:0
(32)

p(x)=1:0 if 06x60:9 or 1:56x62:0

p(x)=1:0 + 0:2 sin
[ �
0:3
(x − 1:2)

]
if 0:9¡x61:5

(33)

The problem arises from the study of the interaction at the very early stage between a
planar premixed �ame and a long length-scale pressure wave. On an acoustic time scale,
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Figure 4. Numerical results of one-dimensional �ame pressure wave: (a) Initial pressure. (b)–(d) (LLBM
results); (b) pressure; (c) density; and (d) velocity. Parameters: �t=4:84×10−4, element number

N =100, time t=300�t, �=1:4, b=2, c=0:01, �=1:2, �=− 1:2.

the planar �ame front can be treated as a density discontinuity and a gas �ow driven by a
pressure disturbance.
Figure 4(a) is the initial pressure. Figure 4(b)–(d) displays the results of the pressure

p, density �, and velocity u at the time t=300�t. The time step is �t=4:84×10−3. The
boundary condition at the two ends is the Von Neumann condition. The result of this ex-
ample shows that LLBM can remove the numerical instabilities caused by the negative dis-
sipation in Reference [34] and LLBM can be used to compute the density discontinuity
problems.
4. Two-dimensional circular version of Sod’s problem.
In order to evaluate the capability of the LLBM, we �rst apply the LLBM to simulate two-

dimensional gas-dynamics problem, two-dimensional circular version of the Sod’s problem.
The initial conditions are the region of high pressure and high density. In this case it is a circle
of radius 0.15 centred at (0:5; 0:5) with V =0 everywhere. This �ow consists of three waves,
an outward travelling shock followed by a contact discontinuity and a rarefaction travelling

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1407–1418
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Figure 5. Numerical results of two-dimensional Sod’s problem. (a) and (b) Density and
pressure pro�les at t=100�t. (c) and (d) Contour lines of the density and pressure.
Parameters: �t=1:0×10−3, lattice size 100×100, time t=100�t, �=1:4, b=4, c=20:0,

�=1:2, �= − 1:2. The contour lines number is 50.

toward the centre. That is,

�=1:0; u=0:0; p=1:0 if (x − 0:5)2 + (y − 0:5)260:152

�=0:125; u=0:0; p=0:1 if (x − 0:5)2 + (y − 0:5)2¿0:152
(34)

The solution domain [0; 1]×[0; 1] is divided into 100×100 squares. Parameters: time step
�t=1:0×10−3, �=1:4, b=4, c=20:0, �=1:2, �= − 1:2. In Figure 5(a) and (b), we plot
the density and pressure pro�les at t=100�t. Figure 5(c) and (d) is contour lines of the
density and the pressure. We �nd a large gradient region in the pro�les and the contour
lines. In Figure 4(a) and (c), the shock wave is the outside large gradient ring, the contact
discontinuity is the inner large gradient ring. They are reasonably good for two-dimensional
shock waves and contact discontinuities. We �nd two drawbacks in the results, (1) pro�les
of density and pressure possess dissymmetrical ring, (2) contact discontinuity is smoothless.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1407–1418
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In the �rst case, the HPP lattice causes the drawback. The HPP lattice lacks of enough
symmetry, the FHP lattice [1] is a suitable choice. The second case may be overcome by
adjusting those parameters to improve the viscosity of the scheme.

4. CONCLUDING REMARKS

We have proposed an implicit LLBM for the compressible �ows. Unlike standard LBM
approaches which use Eulerian coordinates to solve macroscopic governing equations, our
scheme is based on the Lagrangian coordinates and Newton’s second law to build the mo-
tive equation of the elements. The shock waves and contact discontinuities can be automati-
cally emerged. Using the implicit scheme, we obtained good numerical simulation, which are
e�ective enough in the resolution of the shock wave and contact discontinuity.
In this paper, the LLBM has two advantages in contrast to Eulerian version: (i) The energy

equation or entropy equation is vanished, and the energy and entropy equation are complex to
modelling moments of equilibrium distribution function. In this paper, we assume the �ows
as isentropic �ow. (ii) The LLBM does not have convection term. It makes the Lagrangian
lattice Boltzmann easily modelled for the compressible �ows.
Finally, we point out that some problems to be solved: (1) accuracy and stability of the

lattice Lagrangian method, (2) the boundary condition on the wall, (3) the possibility to
develop LLBM for dissymmetrical �ows, and (4) treat examples with Mach numbers. We
will discuss these problems in further papers.
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